The Arabidopsis ALDP protein homologue COMATOSE is instrumental in peroxisomal acetate metabolism.

نویسندگان

  • Mark A Hooks
  • James E Turner
  • Elaine C Murphy
  • Katherine A Johnston
  • Sally Burr
  • Szymon Jarosławski
چکیده

The Arabidopsis acn (acetate non-utilizing) mutants were isolated by fluoroacetate-resistant germination and seedling establishment. We report the characterization of the acn2 mutant. Physiological analyses of acn2 showed that it possessed characteristics similar to those of the mutants cts (COMATOSE)-1 and pxa [peroxisomal ABC (ATP-binding-cassette) transporter]1. The acn2 locus was mapped to within 3 cM of the CTS gene on the bottom arm of chromosome IV using CAPS (cleavage amplification polymorphism) and SSLP (simple sequence-length polymorphism) markers. Crossing acn2 and cts-1 failed to restore the fluoroacetate-sensitive phenotype, suggesting that these mutations were allelic. Sequencing of the ACN2 locus revealed a C-->T nonsense mutation in exon 13, which would have resulted in the elimination of the C-terminal hemitransporter domain of the encoded protein. Neither the full-length CTS protein nor the truncated protein was detected on immunoblots using either C-terminal- or N-terminal-specific anti-CTS antibodies respectively, demonstrating the absence of the entire CTS protein in acn2 mutants. Emerged seedlings of both cts-1 and pxa1 alleles displayed increased resistance to FAc (monofluoroacetic acid) compared with the corresponding wild-type seedlings. Complementation studies showed that mutation of the CTS gene was responsible for the FAc-resistant phenotype, as when the wild-type protein was expressed in both the cts-1 and pxa1 mutant lines, the strains became FAc-sensitive. Feeding studies confirmed that both acn2 and cts-1 mutants were compromised in their ability to convert radiolabelled acetate into soluble carbohydrate. These results demonstrate a role for the ABC protein CTS in providing acetate to the glyoxylate cycle in developing seedlings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations in the Arabidopsis peroxisomal ABC transporter COMATOSE allow differentiation between multiple functions in planta: insights from an allelic series.

COMATOSE (CTS), the Arabidopsis homologue of human Adrenoleukodystrophy protein (ALDP), is required for import of substrates for peroxisomal beta-oxidation. A new allelic series and a homology model based on the bacterial ABC transporter, Sav1866, provide novel insights into structure-function relations of ABC subfamily D proteins. In contrast to ALDP, where the majority of mutations result in ...

متن کامل

Conservation of targeting but divergence in function and quality control of peroxisomal ABC transporters: an analysis using cross-kingdom expression.

ABC (ATP-binding cassette) subfamily D transporters are found in all eukaryotic kingdoms and are known to play essential roles in mammals and plants; however, their number, organization and physiological contexts differ. Via cross-kingdom expression experiments, we have explored the conservation of targeting, protein stability and function between mammalian and plant ABCD transporters. When exp...

متن کامل

Live cell FRET microscopy: homo- and heterodimerization of two human peroxisomal ABC transporters, the adrenoleukodystrophy protein (ALDP, ABCD1) and PMP70 (ABCD3).

The adrenoleukodystrophy protein (ALDP) and the 70-kDa peroxisomal membrane protein (PMP70) are half-ATP-binding cassette (ABC) transporters in the mammalian peroxisome membrane. Mutations in the gene encoding ALDP result in a devastating neurodegenerative disorder, X-linked adrenoleukodystrophy (X-ALD) that is associated with elevated levels of very long chain fatty acids because of impaired p...

متن کامل

The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters.

Peroxisomes play a major role in human cellular lipid metabolism, including the beta-oxidation of fatty acids. The most frequent peroxisomal disorder is X-linked adrenoleukodystrophy (X-ALD), which is caused by mutations in the ABCD1 gene. The protein involved, called ABCD1, or alternatively ALDP, is a member of the ATP-binding-cassette (ABC) transporter family and is located in the peroxisomal...

متن کامل

Identification of a new fatty acid synthesis-transport machinery at the peroxisomal membrane.

The neurodegenerative disease X-linked adrenoleukodystrophy (X-ALD) is characterized by the abnormal accumulation of very long chain fatty acids. Mutations in the gene encoding the peroxisomal ATP-binding cassette half-transporter, adrenoleukodystrophy protein (ALDP), are the primary cause of X-ALD. To gain a better understanding of ALDP dysfunction, we searched for interaction partners of ALDP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 406 3  شماره 

صفحات  -

تاریخ انتشار 2007